-2

-3

-4

Precalculus

3-01 Exponential Functions

4

-2

-3

-4

-5

Exponential function

$$y = a \cdot b^x$$

- *a* is _____ amount (*y*-int)
- *b* is _____
- x is _____
- If b > 1
 - Exponential
- If 0 < b < 1
 - Exponential
 - ____
- Domain: _____
- Range: _____
- Horizontal Asymptote: ______
- *y*-intercept: _____

Transformations

$$y = a \cdot b^{x-h} + k$$

- *a* _____ stretch
 - o If *a* is negative, then _____ over *x*-axis
- h moves _____
- k moves _____
- Domain: _____
- Range:
 - $\circ \qquad \qquad \text{if } a > 0$
 - o _____ if a < 0
- Horizontal Asymptote: ______
- *y*-int: _____ if h = 0

Graph by making a table

Graph
$$y = 4^{-x} + 3$$

Exponential functions are _____

Each x gives a _____y

Solve $16 = 2^{x+2}$

Solve $\left(\frac{1}{3}\right)^x = 81$

Natural Base

- $e = \left(1 + \frac{1}{n}\right)^n$ when $n \to \infty$
- e≈_____...

Compound Interest

$$A = P\left(1 + \frac{r}{n}\right)^{nt}$$

A = current amount

P = principle (initial amount)

r = yearly interest rate (APR)

n = number of compoundings per year

t = years

Compounded Continuously

 $A = Pe^{rt}$